Rabe, M.; Toparli, C.; Chen, Y.-H.; Kasian, O.; Mayrhofer, K. J. J.; Erbe, A.: Alkaline manganese electrochemistry studied by in situ and operando spectroscopic methods - metal dissolution, oxide formation and oxygen evolution. Physical Chemistry Chemical Physics 21 (20), pp. 10457 - 10469 (2019)
Toparli, C.; Ebin, B.; Gürmen, S.: Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles. Journal of Magnetism and Magnetic Materials 423, pp. 133 - 139 (2017)
Toparli, C.; Sarfraz, A.; Erbe, A.: A new look at oxide formation at the copper/electrolyte interface by in situ spectroscopies. Physical Chemistry Chemical Physics 17, pp. 31670 - 31679 (2015)
Erbe, A.; Nayak, S.; Chen, Y.-H.; Niu, F.; Pander, M.; Tecklenburg, S.; Toparli, C.: How to probe structure, kinetics and dynamics at complex interfaces in situ and operando by optical spectroscopy. In: Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; part of "Reference Module in Chemistry, Molecular Sciences and Chemical Engineering", pp. 199 - 219 (Ed. Wandelt, K.). Elsevier, Waltham, MA, USA (2017)
Toparli, C.: Passivity and passivity breakdown on copper: In situ and operando observation of surface oxides. Dissertation, Ruhr-Universität Bochum, Fakultät Maschinenbau, Bochum, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…