Mondragón Ochooa, J. S.; Altin, A.; Rechmann, J.; Erbe, A.: Delamination Kinetics of Thin Film Poly(acrylate) Model Coatings Prepared by Surface Initiated Atom Transfer Radical Polymerization on Iron. Journal of the Electrochemical Society 165 (16), pp. C991 - C998 (2018)
Mondragon Ochoa, J. S.; Altin, A.; Erbe, A.: Comparison of cathodic delamination of poly(n-alkyl methacrylates) on iron. Materials and Corrosion - Werkstoffe und Korrosion 68, pp. 1326 - 1332 (2017)
Mondragon Ochoa, J. S.; Altin, A.; Rohwerder, M.; Erbe, A.: Surface Modification of Iron With Grafted Hydrophobic Acrylic Polymers and Study of Their Delamination Kinetics. Polymers and Organic Chemistry POC16, Hersonissos (Crete), Greece (2016)
Mondragon Ochoa, J. S.: Preparation of Polyacrylic Thin Films on Iron by Controlled Radical Polymerization and their Delamination Behaviour. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.