Su, J.; Li, Z.; Raabe, D.: Microstructural Design to Improve the Mechanical Properties of an Interstitial TRIP-TWIP High-Entropy Alloy. MRS Fall Meeting , Boston, MA, USA (2018)
Niendorf, T.; Wegener, T.; Li, Z.; Raabe, D.: On the fatigue behavior of dual-phase high-entropy alloys in the low-cycle fatigue regime. Fatique 2018, Poitiers, France (2018)
Li, Z.; Raabe, D.: Tuning Phase Transformation in Compositionally Complex Alloys for Superior Mechanical Properties. TMS 2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
Oh, H. S.; Li, Z.; Kim, J. Y.; Ryu, C. W.; Meyer, A.; Tsuchiya, K.; Raabe, D.; Park, E. S.: Phase Stabilization of High Entropy Alloy under Dynamic Forcing Condition. TMS 2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
Li, Z.; Raabe, D.: Designing novel high-entropy alloys towards superior properties. Frontiers in Materials Processing Applications, Research and Technology (FiMPART'2017), Bordeaux, France (2017)
Li, Z.: Designing and understanding novel high-entropy alloys towards superior properties. Talk at Universität Kassel, Institut für Werkstofftechnik, Kassel, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.