Krüger, T.; Varnik, F.; Raabe, D.: Simulation of a dense suspension of deformable particles using the lattice Boltzmann method. ICMMES 2009, Guangzhou, China (2009)
Varnik, F.: Lattice Boltzmann studies of confined flows at intermediate Reynolds numbers: The role of wall roughness. The 5th International Conference for Mesoscopic Methods in Engineering, Amsterdam, The Netherlands (2008)
Varnik, F.: Stability and kinetics of droplets: A free energy based lattice Boltzmann study. DPG Spring Meeting of the Condensed Matter Division, Berlin, Germany (2008)
Gross, M.; Varnik, F.; Raabe, D.: Stability and kinetic of droplets: A free energy based lattice Boltzmann study. Sommer Workshop on Nano-& Microfluidics, Bad Honnef, Germany (2008)
Varnik, F.: Yield stress discontinuity: A manifest of the glass transition in a sheared glass. 369th Heraeus-Seminar, Interplay of Thermodynamics and Hydrodynamics in Soft Condensed Matter, Bad-Honnef, Germany (2006)
Varnik, F.: Shearing glassy model systems: A test of theoretical predictions on non linear rheology. 6th Liquid Matter Conference, Utrecht, The Nederlands (2005)
Varnik, F.: Confinement effects on the slow dynamics of a simulated supercooled polymer melt. International workshop on dynamics in viscous liquids, München, Germany (2004)
Varnik, F.: Glass Transition in Polymer Films: A Molecular Dynamics Study. International Conference on Computational Physics (CCP), Aachen, Germany (2001)
Varnik, F.: Propriétés statiques et dynamiques des couches minces de polymères. Les Journées de Rencontre Nationale sur les propriétés des verres, Montpellier, France (2001)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…