Krüger, T.: Hybrid LB-FEM modeling of dense suspensions of deformable particles under shear. SFB TR6 Seminar, Institut für Theoretische Physik II, HHU Düsseldorf, Germany (2011)
Krüger, T.: Mesoscopic modeling of red blood cell dynamics. Oberseminar: Theorie komplexer Systeme WS 2010, Institut für Theoretische Physik, Universität Heidelberg, Germany (2010)
Krüger, T.: Mesoscopic Modeling of the dynamics of red blood cells. Seminar talk at Ruhr-Universität Bochum, Lehrstuhl für Biophysik, Bochum, Germany (2010)
Krüger, T.: Analyzing blood properties by simulating suspensions of deformable particles: Shear stress and viscosity behavior. ICAMS Scientific Retreat, Akademie Biggesee, Attendorn (2010)
Krüger, T.: Simulation of a dense suspension of red blood cells. TU Braunschweig, Institut für rechnergestützte Modellierung im Bauingenieurwesen, Braunschweig, Germany (2010)
Ayodele, S. G.; Varnik, F.; Raabe, D.: Transverse diffusive broadening in pressure driven microchannels: A lattice Boltzmann study of the scaling laws. The XVth International Congress on Rheology, Monterey, CA. USA (2008)
Varnik, F.; Raabe, D.: Finite size driven droplet evaporation and kinetics of droplets: A lattice Boltzmann study. Sommer Workshop on Nano-& Microfluidics, Bad-Honnef, Germany (2008)
Varnik, F.: Some micro- and nanofluidic issues using a free energy based lattice Boltzmann approach: Finite size driven droplet evaporation and wetting dynamics on chemical gradients. Seminar at MPI für Metallforschung, Stuttgart, Germany (2008)
Varnik, F.: Stability and kinetics of droplets. The 5th International Conference for Mesoscopic Methods in Engineering, Amsterdam, The Netherlands (2008)
Varnik, F.: Flows driven by wettability gradients: A lattice Boltzmann study. DPG Spring Meeting of the Condensed Matter Division, Berlin, Germany (2008)
Varnik, F.: Lattice Boltzmann studies of non-ideal fluids: Droplet coalescence and wetting gradientinduced motion. Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany (2007)
Varnik, F.: Lattice-Boltzmann simulations of multi-phase and multi-component systems. Max-Planck Workshop Multiscale Materials Modelling, Sant Feliu de Guixols, Spain (2007)
Varnik, F.: Discussion meeting on Lattice Boltzmann modeling and simulation of multicomponent and multiphase flows. Seminar Talk at TU-Braunschweig, Braunschweig, Germany (2007)
Varnik, F.: Diffusion, structural relaxation and rheological properties of a simple glass forming model: A molecular dynamics study. The 5th International Workshop on Complex Systems, Sendai, Japan (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.