Changizi, R.: Structural Analysis and Correlative Cathodoluminescence Investigations of Pr (doped) Niobates. Dissertation, Georessourcen und Materialtechnik, RWTH Aachen (2022)
Gomell, L.: Advancing the understanding of the microstructure-property relationship in non-toxic and cost-effective thermoelectric Heusler compounds. Dissertation, Fakultät für Georessourcen und Materialtechnik der RWTH Aachen, Germany (2022)
Abdellaoui, L.: Correlation of microstructures and thermal conductivity of the thermoelectric material Ag16.7Sb30Te53.3. Dissertation, Ruhr-Universität Bochum (2019)
Sysoltseva, M.: Characterization of aerosols and nanoparticles released during various indoor and outdoor human activities. Dissertation, RWTH Aachen University (2018)
Folger, A.: The Influence of Post-Growth Heat Treatments and Etching on the Nanostructure and Properties of Rutile TiO2 Nanowires. Dissertation, RWTH Aachen, Aachen, Germany (2017)
Gleich, S.: Investigation of Sputtered Mo2BC Hard Coatings: Correlation of Nanostructure and Mechanical Properties. Dissertation, RWTH Aachen, Aachen, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.