Gault, B.: Can machine learning bring atom probe microscopy closer to analytical atomic-scale tomography. 12th International Symposium on Atomic Level Characterizations for New Materials and Devices (ALC 19), Kyoto, Japan (2019)
Kasian, O.; Schweinar, K.; Cherevko, S.; Gault, B.; Mayrhofer, K. J. J.: Correlating Atomic Scale Structure with Reaction Mechanisms: Electrocatalytic Evolution of Oxygen. 70th Annual Meeting of the International Society of Electrochemistry, Durban, South Africa (2019)
Gault, B.: An introduction to atom probe tomography: from fundamentals to atomic-scale insights into engineering materials. Rolls Royce Lunchtime Seminar, Derby, UK (2019)
Gault, B.: An introduction to atom probe tomography: from fundamentals to atomic-scale insights into engineering materials. Seminar, University of Manchester, Manchester, UK (2019)
Gault, B.: An introduction to atom probe tomography: from fundamentals to atomic-scale insights into engineering materials. Seminar, University of British Columbia, Vancouver, BC, Canada (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.