Calcagnotto, M.; Ponge, D.; Raabe, D.: Microstructure control and mechanical properties of ultrafine grained dual phase steels. Lecture: Osaka University, Osaka [Japan], December 24, 2008
Calcagnotto, M.; Ponge, D.; Raabe, D.: Fabrication of ultrafine grained dual phase steels. Lecture: National Institute for Materials Science (NIMS), Tsukuba, Japan, October 22, 2007
Raabe, D.: Modellierung und Simulation materialwissenschaftlicher Prozesse. Lecture: Symposion: Digitale Modellierung, Simulation und Visualisierung, Akademie der Wissenschaften und der Literatur, Mainz, March 09, 2007
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.