He, J.; Scholz, F.; Horst, O. M.; Thome, P.; Frenzel, J.; Eggeler, G. F.; Gault, B.: Corrigendum to ‘On the Re segregation at the low angle grain boundary in a single crystal Ni-base superalloy’ Scripta Materialia Volume 185, August 2020, Pages 88-93 (Scripta Materialia (2020) 185 (88–93), (S1359646220302475), (10.1016/j.scriptamat.2020.03.063)). Scripta Materialia 187, p. 309 (2020)
Edmondson, P. D.; Gault, B.; Gilbert, M. R.: An atom probe tomography and inventory calculation examination of second phase precipitates in neutron irradiated single crystal tungsten. Nuclear Fusion 60 (12), 126013 (2020)
Antonov, S.; Li, B.; Gault, B.; Tan, Q.: The effect of solute segregation to deformation twin boundaries on the electrical resistivity of a single-phase superalloy. Scripta Materialia 186, pp. 208 - 212 (2020)
Blum, T.; Valley, J.; Gault, B.; Stephenson, L.: Application of SIMS and APT to Understand Scale Dependent U-Pb Isotope Behavior in Zircon. Microscopy and Microanalysis 26 (S2), pp. 2994 - 2995 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.