Wu, X.; Erbe, A.; Fabritius, H.; Raabe, D.: Relation of ultrastructure and optical properties in the cuticle of beetles. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Reithmeier, M.; Erbe, A.: Antireflective layers on thin metal films for mid‐infrared internal reflection spectroscopy. Optical Interference Coatings - Topical Meeting, Tucson, Arizona, USA (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical Investigation of Electrode Surface Potential Mapping with Scanning Electrochemical Potential Microscopy. The 12th International Scanning Probe Microscopy Conference, Sapporo, Japan (2010)
Reithmeier, M.; Vasan, G.; Erbe, A.: Optical engineering of interfaces for concurrent internal reflection infrared-spectroscopic and electrochemical applications. 109th Annual meeting of the German Bunsen Society of Physical Chemistry (Bunsentagung), Bielefeld, Germany (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical Potential microscopy. 217th ECS Meeting, Vancouver, Canada (2010)
Reithmeier, M.; Erbe, A.: Dielectric layers for signal enhancement in ATR spectroscopy. Spring meeting of the German Physical Society, Regensburg, Germany (2010)
Vasan, G.; Erbe, A.: Finite element calculations of surface enhancement in attenuated total reflection infrared spectroscopy. Spring meeting of the German Physical Society, Regensburg, Germany (2010)
Vasan, G.; Erbe, A.: Finite element calculations of surface enhancement in attenuated total reflection infrared spectroscopy. Workshop Nano particles, nano structures and near field computation, Bremen, Germany (2010)
Erbe, A.; Sigel, R.: Ellipsometric light scattering for probing the interface of colloidal particles. Advanced Polarimetric Instrumentation, Palaiseau, France (2009)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. International Workshops on Surface Modification for Chemical and Biochemical Sensing, Przegorzaly, Poland (2009)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Screening effects in probing the double layer by scanning electrochemical potential microscopy. Comsol European Conference October 2009, Milan, Italy (2009)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Simulation of probing the electric double layer by scanning electrochemical potential microscopy (SECPM). 11th International Fischer Symposium on Microscopy in Electrochemistry, Benediktbeuern, Germany (2009)
Rabe, M.; Baumgartner, L.-M.; Boyle, A. L.; Erbe, A.: Employing electro-responsive germanium interfaces to control amphipathic peptide adsorption – an in situ ATR IR study. 6th International Symposium on Surface Imaging/Spectroscopy at the Solid/Liquid Interface, Krakow, Poland (2021)
Rabe, M.; Rechmann, J.; Boyle, A. L.; Erbe, A.: Designing Electro Responsive Self-Assembled Monolayers Based on the Coiled-Coil Peptide Binding Motif. 17th International Conference on Organized Molecular Films” (ICOMF17), New York, NY, USA (2018)
Rabe, M.; Sarfraz, A.; Erbe, A.: Monitoring Oxide Layer Growth on Manganese Electrodes, by in situ Spectroscopic Ellipsometry and Raman Spectroscopy. 67th Annual Meeting of the ISE, Den Haag, The Netherlands (2016)
Pang, B.; Stratmann, M.; Vogel, D.; Erbe, A.; Rohwerder, M.: Characterization of electrochemical double layer formed on Au (111) electrode: a KPM, FTIR and APXPS investigation. 2nd Annual APXPS Workshop, Berkeley, CA, USA (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…