Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2015/2016, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2015 - March 31, 2016
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2014/2015, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2014 - March 31, 2015
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2013/2014, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2013 - March 31, 2014
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2012/2013, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2012 - March 31, 2013
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Blockveranstaltung, Ruhr-Universität Bochum, Germany, March 21, 2011 - March 25, 2011
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2011/2012, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2011 - March 31, 2012
Neugebauer, J.; Hickel, T.: Moderne Computersimulations-Methoden in der Festkörperphysik. Lecture: Hands-on-Tutorial, Ruhr-Universität Bochum, Bochum, Germany, September 20, 2010 - September 24, 2010
Neugebauer, J.; Hickel, T.: Computerpraktikum: Moderne Computersimulationsmethoden in der Festkörperphysik. Lecture: Blockpraktikum, MPIE, Düsseldorf, Germany, September 20, 2010 - September 24, 2010
Hickel, T.: Moderne Computersimulations-Methoden in der Festkörperphysik. Lecture: Lectures and Exercises, Ruhr-Universität, Bochum, Germany, October 12, 2009 - February 05, 2010
Gomoll, T.: Ab initio Berechnung von Phononenspektren in Systemen mit reduzierter Symmetrie. Diploma, Technische Fachhochschule Berlin, Berlin, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
The goal of this project is to optimize the orientation mapping technique using four-dimensional scanning transmission electron microscopy (4D STEM) in conjunction with precession electron diffraction (PED). The development of complementary metal oxide semiconductor (CMOS)-based cameras has revolutionized the capabilities in data acquisition due to…
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…