Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of Copper-Silver- and Copper-Zirconium thin film libraries produced by combinatorial materials synthesis approach. Gordon Research Seminar on Thin Film and Small Scale Mechanical Behavior (GRS) 2018, Lewiston, ME, USA (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: Mechanical characterization of copper thin films produced by photolithography with a novel microscale high temperature loading rig. The International Conference on Experimental Mechanics, (ICEM) 2018, Brussels, Belgium (2018)
Garzón-Manjón, A.; Zahn, G.; Kuchshaus, C.; Ludwig, A.; Scheu, C.: Observation of the Structural Transformation of Multinary Nanoparticles by In-situ Transmission Electron Microscopy. 13th Multinational Congress on Microscopy (MCM2017), Rovinj, Croatia (2017)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: Setup of a microscale high temperature loading rig for micro-fracture mechanics with a novel temperature measurement approach. Advanced nano-mechanical techniques for academic and industrial research, Aachen, Germany (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: Temperature dependent mechanical characterization of sputtered Copper-Silver thin film tensile specimens produced by photolithography. Materials Chain International Conference, Bochum, Germany, Bochum, Germany (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of Copper-Silver- and Copper-Zirconium thin film libraries produced by combinatorial materials synthesis approach. GDRi Mecano General School 2018, Cargese, Corsica, France (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of Copper-Silver- and Copper-Zirconium thin film libraries produced by combinatorial materials synthesis approach. Gordon Research Seminar on Thin Film and Small Scale Mechanical Behavior (GRS) 2018, Lewiston, ME, USA (2018)
Garzón-Manjón, A.; Zahn, G.; Kuchshaus, C.; Ludwig, A.; Scheu, C.: In-situ Transmission Electron Microscopy on the Transformation Behaviour of Multinary Nanoparticles. International Congress Engineering of Advanced Materials (ICEAM 2017), Erlangen, Germany (2017)
Garzón-Manjón, A.; Zahn, G.; Kuchshaus, C.; Zhang, S.; Ludwig, A.; Scheu, C.: Observation of the Structural Transformation of Multinary Nanoparticles by In-situ Transmission Electron Microscopy. EMAT Workshop on Transmission Electron Microscopy, University of Antwerp, Antwerp, Belgium (2017)
Oellers, T.: Development of combinatorial methods to tailor electrical and mechanical properties of Cu-based thin-film structures. Dissertation, Ruhr-Universität Bochum (2022)
Arigela, V. G.: Development and application of a high-temperature micromechanics stage with a novel temperature measurement approach. Dissertation, Ruhr-Universität Bochum (2020)
Abdellaoui, L.: Correlation of microstructures and thermal conductivity of the thermoelectric material Ag16.7Sb30Te53.3. Dissertation, Ruhr-Universität Bochum (2019)
Philippi, B.: Micromechanical characterization of lead-free solder and its individual microstructure elements. Dissertation, Fakultät für Maschnenbau, RUB, Bochum, Germany (2016)
Marx, V. M.: The mechanical behavior of thin metallic films on flexible polymer substrate. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…