Hüter, C.; Nguyen, C.-D.; Spatschek, R. P.; Neugebauer, J.: Scale bridging between atomistic and mesoscale modelling: Applications of amplitude equation descriptions. Modelling and Simulation in Materials Science and Engineering 22 (3), 034001 (2014)
Hüter, C.; Boussinot, G.; Brener, E. A.; Spatschek, R.: Solidification in syntectic and monotectic systems. Physical Review E 86 (2), pp. 021603-1 - 021603-7 (2012)
Hüter, C.; Boussinot, G.; Brener, E. A.; Temkin, D. E.: Solidification along the interface between demixed liquids in monotectic systems. Physical Review E 83, pp. 050601-1 - 050601-4 (2011)
Boussinot, G.; Hüter, C.; Brener, E.A.; Temkin, D.E.: Growth of a two-phase finger in eutectics systems. Physical Review E. 83, pp. 020601-1 - 020601-4 (2011)
Hüter, C.; Boussinot, G.; Brener, E. A.; Spatschek, R. P.: Isothermal solidification in peritectic systems. In: Proceedings of the 2nd High Mangenese Steels Conference 2014 (2nd HMnS) (Eds. Bleck, W.; Raabe, D.). 2nd High Mangenese Steels Conference 2014 (2nd HMnS), Aachen, Germany, August 31, 2014 - September 04, 2014. (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…