Genchev, G.; Cox, K.; Sarfraz, A.; Bosch, C.; Spiegel, M.; Erbe, A.: Sour corrosion – Investigation of iron sulfide layer growth in saturated H2S solutions. In: Proceedings of the European Corrosion Congress EUROCORR. European Corrosion Congress EUROCORR 2014, Pisa, Italy, September 08, 2014 - September 12, 2014. (2014)
Genchev, G.; Cox, K.; Sarfraz, A.; Bosch, C.; Spiegel, M.; Erbe, A.: Sour corrosion – Investigation of anodic iron sulfide layer growth in saturated H2S saline solutions. Gordon Research Conference-Aqueous Corrosion, New London, NH, USA (2014)
Genchev, G.; Cox, K.; Sarfraz, A.; Bosch, C.; Spiegel, M.; Erbe, A.: Sour corrosion – Investigation of anodic iron sulfide layer growth in saturated H2S saline solutions. Gordon Research Seminar-Aqueous Corrosion, New London, NH, USA (2014)
Cox, K.: Elektrochemische Untersuchung von Eisen im Schwefelwasserstoff gesättigten Elektrolyten. Bachelor, Faculty of Chemistry, Niederrhein University of Applied Sciences (Hochschule Niederrhein), Krefeld, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…