Rohwerder, M.: Novel Approaches for Characterizing the Delamination resistance of Organic Coatings. 230th ECS Meeting-PRiME 2016, Honolulu, HI, USA (2016)
Uebel, M.; Rohwerder, M.: Conducting polymer based anticorrosion composite coatings – acceleration of the trigger signal spreading. 7th Kurt-Schwabe-Symposium 2016, Mittweida, Germany (2016)
Kerger, P.; Rohwerder, M.; Vogel, D.: Using a Novel In-situ/Operando Chemical Cell to Investigate Surface Reactions such as the Reduction of Oxygen and Surface Oxides. 11th International Symposium on Electrochemical Micro & Nanosystem Technologies (EMNT2016), Brussels, Belgium (2016)
Rohwerder, M.; Dandapani, V.: A Novel Potentiometric Approach to a Quantitative Characterization of Oxygen Reduction Kinetics at Buried Interfaces. 11th International Symposium on Electrochemical Micro & Nanosystem Technologies (EMNT2016), Brussels, Belgium (2016)
Uebel, M.; Vimalanandan, A.; Lv, L.-P.; Crespy, D.; Rohwerder, M.: Dual payload capsules for corrosion protection coatings – importance of the electronic coupling at the metal/capsules interface. 67th Annual Meeting of the International Society of Electrochemistry (ISE) 2016, The Hague, The Netherlands (2016)
Mondragon Ochoa, J. S.; Altin, A.; Rohwerder, M.; Erbe, A.: Surface Modification of Iron With Grafted Hydrophobic Acrylic Polymers and Study of Their Delamination Kinetics. Polymers and Organic Chemistry POC16, Hersonissos (Crete), Greece (2016)
Rohwerder, M.: Die Rasterkelvinsonde: neue Entwicklungen für die Charakterisierung von Korrosionsschutzbeschichtungen. 7. Korrosionsschutz-Symposium, Kloster Irsee, Germany (2016)
Rohwerder, M.: Characterization of Oxides in the Heat Affected Zone. Welding Workshop “Guidelines for use of welded stainless steel in corrosive environments” at TWI, Granta Park, Cambridge, UK (2016)
Tarzimoghadam, Z.; Rohwerder, M.; Merzlikin, S. V.; Bashir, A.; Yedra, L.; Eswara, S.; Ponge, D.; Raabe, D.: On the Role of δ phase in Hydrogen Embrittlement of Alloy 718: Multi-scale H-Mapping in a Ni–Nb Model Alloy. SINTEF and NTNU's Environmental Assisted Cracking (SNEAC) workshop, Trondheim, Norway (2016)
Wengert, A.; Swaminathan, S.; Vogel, A.; Rohwerder, M.: Internal oxidation of high strength steels during short-term annealing: Observation of unexpectedly fast progress of the internal oxidation and first tentative model. EFC Workshop High Temperature Corrosion, Frankfurt, Germany (2015)
Uebel, M.; Vimalanandan, A.; Tran, T. H.; Rohwerder, M.: Coatings for intelligent self-healing of macroscopic defects: first results and the major challenges. eMRS, Symposium „Self-Healing Materials", Warsaw, Poland (2015)
Rohwerder, M.: Selbstheilende Beschichtungen für den Korrosionsschutz: Ein kritischer Überblick. 28. Sitzung des AK “Korrosionsschutz durch Beschichtungen”, GfKorr, Frankfurt, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.