Li, Y. S.; Niu, Y.; Spiegel, M.: High temperature interaction of Al/Si-modified Fe–Cr alloys with KCl. Corrosion Science 49 (4), pp. 1799 - 1815 (2007)
Li, Y. S.; Spiegel, M.; Shimada, S.: Corrosion behaviour of model alloys with NaCl–KCl coating. Materials Chemistry and Physics 93 (1), p. 217 - 217 (2005)
Li, Y. S.; Spiegel, M.: Models describing the degradation of FeAl and NiAl alloys induced by ZnCl2/KCl melt at 400-450 °C. Corrosion Science 46, 8 (2004)
Li, Y. S.; Spiegel, M.: Degradation performance of Al-containing alloys and intermetallics by molten ZnCl2/KCl. In: Corrosion Science in the 21th Century, 1. UMIST, Manchester, UK (2003)
Li, Y. S.; Spiegel, M.: Degradation performance of Al-containing alloys and intermetallics by molten ZnCl2/KCl. Corrosion Science in the 21th Century, UMIST Manchester, UK (2003)
Li, Y. S.; Spiegel, M.: High temperature interactions of pure Cr with KCl. 6th Int. Symposium on High temperature Corrosion and Protection of Materials, Lez Embiez, France (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.