Davut, K.; Zaefferer, S.: Phase fraction and texture quantification of Al-TRIP steel from EBSD data. 3rd Int. Conf. On Texture and Anisotropy of Polycrystals (ITAP-3), Göttingen, Germany (2009)
Elhami, N.-N.; Tjahjanto, D.; Zaefferer, S.: Microstructural and micromechanical assessment of damage nucleation in a low-alloyed TRIP Steel. 3rd International Conference on Texture and Anisotropy of Polycrystals ITAP-3, Göttingen, Germany (2009)
Steinmetz, D.; Zaefferer, S.: Challenges of low-accelerating voltage electron backscatter diffraction. 3rd International Conference on Texture and Anisotropy of Polycrystals (ITAP-3), Göttingen, Germany (2009)
Zaefferer, S.: 3D-orientation microscopy using FIB–EBSD tomography: An overview on techniques, applications and limits. 158th ISIJ Meeting, Kyoto, Japan (2009)
Zambaldi, C.; Roters, F.; Zaefferer, S.; Raabe, D.: Crystal plasticity modeling for property extraction and the microstructure properties relation of intermetallic -TiAl nased alloys. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Effect of grain size and heterogeneous strain distribution on deformation twinning in a Fe–22Mn–0.6C TWIP steel. THERMEC 2009, Berlin, Germany (2009)
Calcagnotto, M.; Ponge, D.; Demir, E.; Raabe, D.; Zaefferer, S.: 3D-EBSD Investigation on Orientation Gradients and Geometrically Necessary Dislocations Induced by the Martensitic Phase Transformation in Ultrafine Grained Dual-Phase Steels. Interdisciplinary Symposium on 3D Microscopy, Interlaken, Switzerland (2009)
Khorashadizadeh, A.; Winning, M.; Zaefferer, S.; Raabe, D.: 3D tomographic EBSD characterization of crystal topology in a CuZr alloy processed by equal channel angular pressing. Interdisciplinary Symposium on 3D Microscopy, Interlaken, Switzerland (2009)
Zaefferer, S.: 3D orientation microscopy by EBSD-FIB tomography: What can be done, what can't? AGH - ZEISS Workshop on Focused Ion Beam techniques, Krakow, Poland (2009)
Davut, K.; Zaefferer, S.: Effect of step size and scanned area on phase fraction and texture quantification from EBSD data. DGM-DVM, EBSD-Workshop 2009, Mikrostrukturuntersuchungen im REM, Chemnitz, Germany (2009)
Zaefferer, S.: 3D-orientation microscopy using FIB–EBSD tomography: An overview on techniques, applications and limits. EMAS 2009, Gdańsk, Poland (2009)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Quantitative electron channelling contrast imaging: A promising tool for the study of dislocation structures in SEM. Electron Backscatter Diffraction Meeting, Swansea, UK (2009)
Steinmetz, D.; Zaefferer, S.: Towards ultrahigh resolution EBSD by use of low accelerating voltage. EBSD 2009 Meeting, University of Swansea, Wales, UK (2009)
Raabe, D.; Demir, E.; Zaefferer, S.: Experimental investigation of geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. MRS 2009 Fall Meeting, Boston, MA, USA (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.