Zaefferer, S.: Some topics of experimental texture and microstructure research at the MPIE. Intern. Workshop on Modern Texture Research in Engineering Materials (MoteX), Düsseldorf (2003)
Zaefferer, S.: Microstructural characterization of low alloyed TRIP steels by SEM and TEM techniques. Seminar des Instituts für Eisenhüttenkunde der RWTH Aachen, RWTH Aachen, Germany (2003)
Zaefferer, S.: Microtexture measurements: A powerful tool to understand microstructures. Fachvortrag bei der Sitzung des Fachbeirates des Instituts, Düsseldorf, Düsseldorf (2003)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Intern. Conf. on Strength of Materials (ICSMA 13), Budapest, Hungary (2003)
Archie, F. M. F.; Zaefferer, S.: Micro-damage initiation in advanced high strength steels (AHSS): Influence of Prior Austenite Grain Boundaries. Meeting Materials 2016 - M2i - Materials innovation institute, Nieuwegein, The Netherlands (2016)
Stechmann, G.; Zaefferer, S.; Konijnenberg, P. J.: Microstructural and Electronic Characterization of CdTe Thin Film Solar Cells: A Correlative SEM-Based Approach. IAMNano, Port Elizabeth, South Africa (2016)
Stechmann, G.; Zaefferer, S.: Microstructural and Electronic Characterization of CdTe Thin Film Solar Cells: A Correlative SEM-Based Approach. IAMNano, Hamburg, Germany (2015)
Zaefferer, S.; Zhu, Z.; Reed, R. C.: Observation of Dislocation Evolution during Straining of a γ-γ’ Superalloy Single Crystal using the CECCI technique. Eurosuperalloys 2014, Giens, France (2014)
Archie, F. M. F.; Zaefferer, S.; Raabe, D.: The influence of grain boundary character on dislocation densities and fracture toughness in AHSS. M2i Conference "High Tech Materials: your world - our business", Sint Michielgestel, The Netherlands (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.