Weber, F.; Schestakow, I.; Roters, F.; Raabe, D.: Texture Evolution During Bending of a Single Crystal Copper Nanowire Studied by EBSD and Crystal Plasticity Finite Element Simulations. Advanced Engineering Materials 10 (8), pp. 737 - 741 (2008)
Weber, F.; Schestakow, I.; Raabe, D.; Roters, F.: Investigation of texture and microstructure in a bent monocrystalline Cu-nanowire using EBSD and crystal plasticity finite element simulations. 7th GAMM Seminar on Microstructures, Bochum, Germany (2008)
Weber, F.: Metallphysikalische Untersuchungen der Platizität von Einkristallen in mikroskopischen Dimensionen unter Verwendung von FEM Simulation. Bachelor, FH Düsseldorf, Düsseldorf [Germany] (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…