Prokopčáková, P.; Švec, M.; Palm, M.: Microstructural evolution and creep of Fe–Al–Ta alloys. International Journal of Materials Research 107 (5), pp. 396 - 405 (2016)
Li, X.; Prokopčáková, P.; Palm, M.: Microstructure and mechanical properties of Fe–Al–Ti–B alloys with additions of Mo and W. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 611, pp. 234 - 241 (2014)
Prokopčáková, P.; Švec, M.; Lotfian, S.; Palm, M.: Microstructure – property relationships of iron aluminides. 64. Metallkunde-Kolloquium Montanuniversität Leoben, Lech am Arlberg, Austria (2018)
Li, X.; Prokopčáková, P.; Palm, M.: Microstructure and mechanical properties of Fe–Al–Ti–B-based alloys with addition of Mo and W. Intermetallics 2013, Educational Center Kloster Banz, Bad Staffelstein, Germany (2013)
Prokopčáková, P.; Palm, M.: Precipitation and transformation kinetics in Fe–Al–Ta alloys. Intermetallics 2013, Educational Center Kloster Banz, Bad Staffelstein, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…