Haghighat, S. M. H.; Welsch, E. D.; Gutiérrez-Urrutia, I.; Roters, F.; Raabe, D.: Mesoscale modeling of dislocation mechanisms and the effect of nano-sized carbide morphology on the strengthening of advanced lightweight high-Mn steels. MMM2014, 7th International Conference on Multiscale Materials Modeling
, Berkeley, CA, USA (2014)
Haghighat, S. M. H.; Welsch, E. D.; Gutiérrez-Urrutia, I.; Raabe, D.: Alloy design of advanced lightweight high-Mn steels by combined TEM and discrete dislocation dynamics simulations. 2nd International Conference on High Manganese Steels, Aachen, Germany (2014)
Welsch, E. D.; Haghighat, S. M. H.; Gutiérrez-Urrutia, I.; Raabe, D.: Investigation of nano-sized kappa carbide distribution in advanced austenitic lightweight high-Mn steels by coupled TEM and DDD simulations: Strengthening and dislocation-based mechanisms. 2nd International Conference on High Manganese Steels, Aachen, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…