Baron, C.; Springer, H.; Raabe, D.: Development of high modulus steels based on the Fe – Cr – B system. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 724, pp. 142 - 147 (2018)
Aparicio-Fernández, R.; Szczepaniak, A.; Springer, H.; Raabe, D.: Crystallisation of amorphous Fe – Ti – B alloys as a design pathway for nano-structured high modulus steels. Journal of Alloys and Compounds 704, pp. 565 - 573 (2017)
Baron, C.; Springer, H.; Raabe, D.: Combinatorial screening of the microstructure–property relationships for Fe–B–X stiff, light, strong and ductile steels. Materials and Design 112, pp. 131 - 139 (2016)
Baron, C.; Springer, H.; Raabe, D.: Effects of Mn additions on microstructure and properties of Fe–TiB2 based high modulus steels. Materials and Design 111, pp. 185 - 191 (2016)
Belde, M. M.; Springer, H.; Raabe, D.: Vessel microstructure design: A new approach for site-specific core-shell micromechanical tailoring of TRIP-assisted ultra-high strength steels. Acta Materialia 113, pp. 19 - 31 (2016)
Baron, C.; Springer, H.; Raabe, D.: Efficient liquid metallurgy synthesis of Fe–TiB2 high modulus steels via in-situ reduction of titanium oxides. Materials and Design 97, pp. 357 - 363 (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.