Nellessen, J.; Sandlöbes, S.; Raabe, D.: Low cycle fatigue in aluminum single and bi-crystals: On the influence of crystal orientation. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 668, pp. 166 - 179 (2016)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Effects of strain amplitude, cycle number and orientation on low cycle fatigue microstructures in austenitic stainless steel studied by electron channelling contrast imaging. Acta Materialia 87, pp. 86 - 99 (2015)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Effects of strain amplitude, cycle number and orientation on low cycle fatigue microstructures in fcc materials studied by Electron Channeling Contrast Imaging. TMS 2015 - 144th Annual Meeting & Exhibition, Orlando, FL, USA (2015)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Systematic Investigation of the Influence of Strain Amplitude, Orientation and Cycle Number on the Dislocation Structures Formed during Low Cycle Fatigue. MSE 2014, Darmstadt, Germany (2014)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Systematic and efficient investigation of the influences on the dislocation structures formed during low cycle fatigue in austenitic stainless steel. Euromat 2013, Sevilla, Spain (2013)
Nellessen, J.: Effects of strain amplitude, cycle number and orientation on low cycle fatigue microstructures in austenitic stainless steel and aluminum. Dissertation, RWTH Aachen, Aachen, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.