Schneider, W. B.; Benedikt, U.; Auer, A. A.: Interaction of platinum nanoparticles with graphitic carbon structures: A computational study. ChemPhysChem 14 (13), pp. 2984 - 2989 (2013)
Kettner, M.; Benedikt, U.; Schneider, W.; Auer, A. A.: Computational Study of Pt/Co Core-Shell Nanoparticles: Segregation, Adsorbates and Catalyst Activity. Journal of Physical Chemistry C 116 (29), pp. 15432 - 15438 (2012)
Auer, A. A.; Richter, A.; Berezkin, A. V.; Guseva, D. V.; Spange, S.: Theoretical study of twin polymerization – From chemical reactivity to structure formation. Macromolecular Theory Simulations 21 (9), pp. 615 - 628 (2012)
Benedikt, U.; Auer, A. A.; Espig, M.; Hackbusch, W.: Tensor decomposition in post-Hartree-Fock methods. I. Two-electron integrals and MP2. Journal of Chemical Physics 134 (5), 054118, pp. 1 - 12 (2011)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain, June 26, 2011 - July 01, 2011. (2011)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain (2011)
Challenges for Theory in Electrochemistry. Minisymposium "Challenges for Theory in Electrochemistry", MPI für Eisenforschung GmbH, Düsseldorf, Germany (2010)
Perspectives in Quantum chemistry for Electrochemistry. Minisymposium "Perspectives in Quantum chemistry for Electrochemistry", Center for Electrochemical Sciences, Ruhr-Universität Bochum, Germany (2010)
Benedikt, U.; Schneider, W.; Auer, A. A.: Oxygen Reduction Reaction on Pt-Nanoparticles: A Density-Functional Based Study. 46th Symposium on Theoretical Chemistry, STC2010, Münster, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this EU Horizon project, we at MPIE, will focus on the sustainable pre-reduction of manganese ores with hydrogen, especially the kinetic analysis of the reduction process using thermogravimetry analysis and an in-depth understand the role of microstructure and local chemistry in the reduction process.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…