Delandar, A. H.; Haghighat, S. M. H.; Korzhavyi, P.; Sandström, R.: Dislocation dynamics modeling of plastic deformation in single-crystal copper at high strain rates. International Journal of Materials Research 107 (11), pp. 988 - 995 (2016)
Haghighat, S. M. H.; Schäublin, R. E.: Obstacle strength of binary junction due to dislocation dipole formation: An in-situ transmission electron microscopy study. Journal of Nuclear Materials 465, pp. 648 - 652 (2015)
Haghighat, S. M. H.; Schäublin, R. E.; Raabe, D.: Atomistic simulation of the a0 <1 0 0> binary junction formation and its unzipping in body-centered cubic iron. Acta Materialia 64, pp. 24 - 32 (2014)
Schäublin, R. E.; Haghighat, S. M. H.: Molecular dynamics study of strengthening by nanometric void and Cr alloying in Fe. Journal of Nuclear Materials 442 (1-3 Suppl.1), pp. S643 - S648 (2013)
Haghighat, S. M. H.; Eggeler, G. F.; Raabe, D.: Effect of climb on dislocation mechanisms and creep rates in γ’-strengthened Ni base superalloy single crystals: A discrete dislocation dynamics study. Acta Materialia 61 (10), pp. 3709 - 3723 (2013)
Haghighat, S. M. H.; Schäublin, R.: In situ transmission electron microscopy of the interaction between a moving dislocation and obstacles of dislocation character in pure iron. Philosophical Magazine Letters 93 (10), pp. 575 - 582 (2013)
Haghighat, S. M. H.; Schäublin, R.: In-situ transmission electron microscopy of dislocation-defect interaction in bcc-Fe. In: DISLOCATIONS 2012, pp. 33 - 36. 4th International Conference on Dislocations, Budapest, Hungary, August 27, 2012 - August 31, 2012. (2012)
Haghighat, S. M. H.; Li, Z.; Zaefferer, S.; Reed, R. C.; Raabe, D.: Mesoscale modeling of dislocation climb and primary creep process in single crystal Ni base superalloys. International Workshop on Dislocation Dynamics Simulations, Saclay, France (2014)
Haghighat, S. M. H.; Welsch, E. D.; Gutiérrez-Urrutia, I.; Roters, F.; Raabe, D.: Mesoscale modeling of dislocation mechanisms and the effect of nano-sized carbide morphology on the strengthening of advanced lightweight high-Mn steels. MMM2014, 7th International Conference on Multiscale Materials Modeling
, Berkeley, CA, USA (2014)
Haghighat, S. M. H.; Li, Z.; Zaefferer, S.; Reed, R. C.; Raabe, D.: Characterization and modeling of the propagation of creep dislocations from the interdendritic boundaries in single crystal Ni base superalloys. International Workshop on Modelling and Simulation of Superalloys, Bochum, Germany (2014)
Haghighat, S. M. H.; Welsch, E. D.; Gutiérrez-Urrutia, I.; Raabe, D.: Alloy design of advanced lightweight high-Mn steels by combined TEM and discrete dislocation dynamics simulations. 2nd International Conference on High Manganese Steels, Aachen, Germany (2014)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.