Zaefferer, S.; Wright, S. I.; Raabe, D.: Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: A new dimension of microstructure characterization. Metallurgical and Materials Transactions A 39A (2), pp. 374 - 389 (2008)
Dorner, D.; Zaefferer, S.; Raabe, D.: Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal. Acta Materialia 55, pp. 2519 - 2530 (2007)
Kobayashi, S.; Zaefferer, S.; Raabe, D.: Relative Importance of Nucleation vs. Growth for Recrystallisation in Particle-containing Fe3Al Alloys. Materials Science Forum 550, not specified, pp. 345 - 350 (2007)
Wright, S. I.; Zaefferer, S.: Three Dimensional Orientation Microscopy Electron Backscatter Diffraction in a combined FIB/SEM. GIT Imaging & Microscopy 4, pp. 40 - 41 (2007)
Zaefferer, S.: On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns. Ultramicroscopy 107, pp. 254 - 266 (2007)
Dorner, D.; Zaefferer, S.; Lahn, L.; Raabe, D.: Overview of Microstructure and Microtexture Development in Grain-oriented Silicon Steel. Journal of Magnetism and Magnetic Materials 304 (2), pp. 183 - 186 (2006)
Yi, S. B.; Zaefferer, S.; Brokmeier, H. G.: Mechanical behaviour and microstructural evolution of magnesium alloy AZ31 in tension at different temperatures. Materials Science and Engineering: A 424 (1-2), pp. 275 - 281 (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.; Zaefferer, S.: Three dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Materialia 54 (7), pp. 1707 - 1994 (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.; Schuh, C.: Characterization of the Microstructure and Texture of Nanostructured Electrodeposited NiCo by use of Electron Backscatter Diffraction (EBSD). Acta Materialia 54, pp. 2451 - 2462 (2006)
Kobayashi, S.; Zaefferer, S.: Creation of Fine-grained and Deformed Structure with Fine Carbide Particles in a Fe3Al–Cr–Mo–C Alloy. Intermetallics 14 (10-11), pp. 1252 - 1256 (2006)
Bastos, A.; Raabe, D.; Zaefferer, S.; Schuh, C.: Characterization of Nanostructured Electrodeposited NiCo Samples by use of Electron Backscatter Diffraction (EBSD). Mater. Res. Soc. Sympos. Proc. 880E, BB1.3. (2005)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Materials Science and Engineering A 387–389, pp. 950 - 954 (2004)
Konrad, J.; Zaefferer, S.; Schneider, A.: Investigation of nucleation mechanisms of recrystallization in warm rolled Fe3Al base alloys. Materials Science Forum 467-470, pp. 75 - 80 (2004)
Zaefferer, S.: Charactérisation de la microtexture: Quand faut-il utiliser le microscope électronique à transmission? L'Analyse EBSD, Principes et Applications, pp. 161 - 170 (2004)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…