Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: The free energy of iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. DPG Spring Meeting 2009, Dresden, Germany (2009)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Application of an eight-band k.p model to study III-nitride semiconductor. DPG Spring Meeting 2009, Dresden, Germany (2009)
Hickel, T.; Uijttewaal, M.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. APS March Meeting, Pittsburgh, PA, USA (2009)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Investigation of group III-nitride semiconductor nanostructures using an eight-band k.p formalism. APS March meeting, Pittsburgh, PA, USA (2009)
Hickel, T.; Uijttewaal, M.; Neugebauer, J.: Ab initio investigation of temperature dependent effects in magnetic shape memory Heusler alloys. SPP 1239 Convention, Duisburg, Germany (2009)
Hickel, T.: Computational Phase Studies: Deriving free energies and phase transitions from first principles. MRS 2009 Fall Meeting, Boston, MA, USA (2009)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Modeling of electronic and optical properties of GaN/AlN quantum dots by using the k.p-method. Bremen DFG Forschergruppe: Workshop in Riezlern, Riezlern, Austria (2008)
Dick, A.; Hickel, T.; Neugebauer, J.: First Principles Predictions of Mechanical Properties of FeMn-Alloys. Workshop des SFB761, Beilngries, Germany (2008)
Aydin, U.; Ismer, L.; Hickel, T.: Ab initio study of trends in the thermodynamic and kinetic properties of H in 3d transition metals. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: The free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Effect of strain and polarization on the electronic properties of 2-, 1- and 0-dimensional semiconductor nanostructures. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Uijttewaal, M.; Hickel, T.; Neugebauer, J.: Phase transformations of Ni2MnGa shape memory alloy from first principles: The (pre-)martensitic transition by phonons and magnons, Soft mode phase transformation by phonon couplings. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…