Pan, Y.; Dong, A.; Zhou, Y.; Antonov, S.; Chen, Z.; Du, D.; Sun, B.: Synergistic enhancement of high temperature strength and ductility with a novel g/e dual-phase hetero-nanostructure in NiCoCr-based alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 877, 145142 (2023)
Zhu, Y.; Heo, T. W.; Rodriguez, J. N.; Weber, P. K.; Shi, R.; Baer, B. J.; Morgado, F. F.; Antonov, S.; Kweon, K. E.; Watkins, E. B.et al.; Savage, D. J.; Chapman, J. E.; Keilbart, N. D.; Song, Y.; Zhen, Q.; Gault, B.; Vogel, S. C.; Sen-Britain, S. T.; Shalloo, M. G.; Orme, C.; Bagge-Hansen, M.; Hahn, C.; Pham, T. A.; Macdonald, D. D.; Qiu, R. S.; Wood, B. C.: Hydriding of titanium: Recent trends and perspectives in advanced characterization and multiscale modeling. Current Opinion in Solid State and Materials Science 26, 101020 (2022)
Zhang, C.; Yu, H.; Antonov, S.; Li, W.; He, J.; Zhi, H.; Su, Y.: Alleviating the strength-ductility trade-off dilemma in high manganese steels after hydrogen charging by adjusting the gradient distribution of twins. Corrosion Science 207, 110579 (2022)
Tan, Q.; Yan, Z.; Li, R.; Ren, Y.; Wang, Y.; Gault, B.; Antonov, S.: In-situ synchrotron-based high energy X-ray diffraction study of the deformation mechanism of δ-hydrides in a commercially pure titanium. Scripta Materialia 213, 114608 (2022)
Tan, Q.; Yan, Z.; Wang, H.; Dye, D.; Antonov, S.; Gault, B.: The role of β pockets resulting from Fe impurities in hydride formation in titanium. Scripta Materialia 213, 114640 (2022)
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.