Zheludkevich, M. L.; Serra, R.; Grundmeier, G.; Yang, L. H.; Ferreira, M. G. S.: Barrier properties of polyurethane coil coatings treated by microwave plasma polymerization. Surface and Coatings Technology 200 (12-13), pp. 4040 - 4049 (2006)
Wapner, K.; Grundmeier, G.: Spectroscopic analysis of the interface chemistry of ultra-thin plasma polymer films on iron. Surface and Coatings Technology 200 (1-4), pp. 100 - 103 (2005)
Raacke, J.; Giza, M.; Grundmeier, G.: Combination of FTIR reflection absorption spectroscopy and work function measurement for in-situ studies of plasma modification of polymer and metal surfaces. Surface and Coatings Technology 200 (1-4), pp. 280 - 283 (2005)
Carpentier, J.; Grundmeier, G.: Chemical structure and morphology of thin bilayer and composite organosilicon and fluorocarbon microwave plasma polymer films. Surface and Coatings Technology 192 (2-3), pp. 189 - 198 (2005)
Grundmeier, G.; Stratmann, M.: Adhesion and De-adhesion mechanisms at polymer/metal interfaces: Mechanistic understanding based on in situ studies of buried interfaces. Annual Review of Materials Research 35, pp. 571 - 615 (2005)
Wapner, K.; Grundmeier, G.: Application of the Scanning Kelvin Probe for the Study of the Corrosion Resistance of Interfacial Thin Silicon Organic Films at Adhesive/Metal Interfaces. Silicon Chemistry 2 (5-6), pp. 235 - 245 (2005)
Wapner, K.; Schoenberger, B.; Stratmann, M.; Grundmeier, G.: Height-regulating scanning Kelvin probe for simultaneous measurement of surface topology and electrode potentials at buried polymer/metal interfaces. Journal of the Electrochemical Society 152 (3), pp. E114 - E122 (2005)
Wapner, K.; Schönberger, B.; Stratmann, M.; Grundmeier, G.: Applications of a new height regulated Scanning Kelvin Probe in Adhesion and Corrosion Science. Journal of the Electrochemical Society 152 (3), pp. E114 - E122 (2005)
Wapner, K.; Grundmeier, G.: Spatially resolved measurements of the diffusion of water in a model adhesive/silicon lap joint using FTIR-transmission-microscopy. International Journal of Adhesion and Adhesives 24 (3), pp. 193 - 200 (2004)
Barranco, V.; Carpentier, J.; Grundmeier, G.: Correlation of morphology and barrier properties of thin microwave plasma polymer films on metal substrate. Electrochimica Acta 49 (12), pp. 1999 - 2013 (2004)
Barranco, V.; Thiemann, P.; Yasuda, H. K.; Stratmann, M.; Grundmeier, G.: Spectroscopic and electrochemical characterisation of thin cathodic plasma polymer films on iron. Applied Surface Science 229 (1-4), pp. 87 - 96 (2004)
Grundmeier, G.; Thiemann, P.; Carpentier, J.; Shirtcliffe, N.; Stratmann, M.: Tailoring of the morphology and chemical composition of thin organosilane microwave plasma polymer layers on metal substrates. Thin Solid Films 446 (1), pp. 61 - 71 (2004)
Shirtcliffe, N. J.; Stratmann, M.; Grundmeier, G.: In situ infrared spectroscopic studies of ultrathin inorganic film growth on zinc in non-polymerizing cold plasmas. Surf Interface Anal 35, 10, pp. 799 - 804 (2003)
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.