Kirchlechner, C.; Malyar, N.; Imrich, P. J.; Dehm, G.: Plastische Verformung an Korngrenzen: Neue Einblicke durch miniaturisierte Zug- und Druckversuche. 11. Tagung Gefüge und Bruch (2015), Leoben, Austria (2015)
Fink, C.; Brinckmann, S.; Shin, S.; Dehm, G.: Nanotribology and Microstructure Evolution in Pearlite. Frühjahrstagung der Sektion Kondensierte Materie der Deutschen Physikalischen Gesellschaft
, Berlin, Germany (2015)
Malyar, N.; Dehm, G.; Kirchlechner, C.: Insights into dislocation slip transfer by µLaue diffraction. Arbeitskreis-Treffen der Deutschen Gesellschaft für Materialkunde (DGM) e.V. „Rasterkraftmikroskopie und nanomechanische Methoden“, Darmstadt, Germany (2015)
Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: The mechanical behavior of thin cobalt films on polyimide. Arbeitskreistreffen Rasterkraftmikroskopie und nanomechanische Methoden, TU Darmstadt, Darmstadt, Germny (2015)
Dehm, G.: Structure and Nano-/Micromechanics of Materials. Chemisch-Physikalisch-Technische Sektion der Max-Planck-Gesellschaft, Berlin, Germany (2015)
Dehm, G.: New Insights into Materials Phenomena by Advanced TEM. Symposium: Advanced Materials Analysis by latest STEM Technologies, Mülheim an der Ruhr, Germany (2015)
Brinckmann, S.; Fink, C.; Dehm, G.: Roughness and Microstructure Development during Nanotribology in Austenite. DPG-Spring Meeting, Berlin, Germany (2015)
Dehm, G.: Probing deformation mechanisms of Cu structures relevant for electronic applications. Electronic Materials and Applications, Orlando, FL, USA (2015)
Dehm, G.: Phase stability in nanostructured metallic materials with exceptional strength. 2015 MRS Fall Meeting, Symposium VV: In situ study of synthesis and transformation of materials, Boston, MA, USA (2015)
Harzer, T. P.; Djaziri, S.; Raghavan, R.; Dehm, G.: Nanostructure and mechanical behavior of metastable Cu–Cr thin films grown by molecular beam epitaxy. 61. Metallkunde-Kolloquium - Werkstoffforschung für Wirtschaft und Gesellschaft, Lech am Arlberg, Austria (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Probing deformation and fracture of materials with high spatial resolution. EDSA 2015 – International Workshop on Stress Assisted Environmental Damage in Structural Materials, Chennai, India (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Are micro-fracture tests reliable? 2015 MRS Fall Meeting and Exhibit - Symposium T: Strength and Failure at the Micro and Nano-scale-From fundamentals to Applications
, Boston, MA, USA (2015)
Dehm, G.: Differences in deformation behavior of Cu structures containing individual grain boundaries. Symposium RR: Scaling Effects in Plasticity - Synergy between Simulations and Experiments, Fall MRS, Boston, MA, USA (2014)
Hodnik, N.; Baldizzone, C.; Jeyabharathi, C.; Dehm, G.; Mayrhofer, K. J. J.: Bridging the gap between electrochemistry and microscopy: electrochemical IL-TEM and in-situ electrochemical TEM study. 2nd Conference on in In-situ and Correlative Electron Microscopy, Saarbrücken, Germany (2014)
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.