Sato, H.; Zaefferer, S.: A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy. Acta Materialia 57 (6), pp. 1931 - 1937 (2009)
Sato, H.; Zaefferer, S.; Watanabe, Y.: In-situ Observation of Butterfly-type Martensite in Fe-30mass%Ni Alloy during Tensile Test Using High-resolution EBSD. ISIJ International 49, pp. 1784 - 1791 (2009)
Zaefferer, S.; Sato, H.: Investigation of the formation mechanism of martensite plates in Fe-30%Ni by a high resolution orientation microscopy in SEM. ESOMAT 2006, Bochum (2006)
Sato, H.; Zaefferer, S.: A study on the crystal orientation relationship of butterfly martensite in an Fe30 % Ni alloy by 3-D EBSD-based orientation microscopy. Microscopy Conference 2005, Davos, Switzerland (2005)
Sato, H.; Zaefferer, S.: 3D-analysis of the crystal orientation relationship and growth process of lenticular martensite in Fe–30mass%Ni alloy. DPG Frühjahrstagung, Berlin, Germany (2005)
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.