Frommeyer, G.; Brokmeier, K.; Brüx, U.; Deges, J.; Knippscheer, S.: Innovative Werkstoffe für die fortgeschrittene Schmiedetechnologie. Int. Konf. Neuere Entwicklungen in der Massivumformung, Stuttgart, Germany, May 12, 2009 - May 13, 2009. Int. Konf. Neuere Entwicklungen in der Massivumformung, pp. 289 - 318 (2009)
Frommeyer, G.; Brüx, U.; Brokmeier, K.; Rablbauer, R.: Development, Microstructures and Properties of Advanced High-Strength and Supra-Ductile Light-Weight Steels. International Conference on Processing and Manufacturing of Advanced Materials -Thermec 2009, Berlin, Germany (2009)
Frommeyer, G.; Brokmeier, K.; Knippscheer, S.: Innovative Materials for Advanced Forming Technology. International Conference on New Developments in Forging Technology, Stuttgart, Fellbach, Germany (2009)
Frommeyer, G.; Rablbauer, R.; Brokmeier, K.: Das Potential von hochfesten und supraduktilen Fe–Mn–Al–Si–C Stählen für den zukünftigen Karosserieleichtbau - Stand der Technik und Entwicklungstrends. WAMM World Automotive Materials Meeting 2008, Bad Nauheim/Frankfurt, Germany (2008)
Frommeyer, G.; Rablbauer, R.; Brokmeier, K.: Entwicklung und Eigenschaften ultrahochfester und supraduktiler Stähle für den Fahrzeugbau. Clausthal Industriekolloquium Sonderforschungsbereich 675, Clausthal (2007)
Brokmeier, K.: Improving the fomability and strength of light-weight Fe-Mn-Al-Si steels. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Brokmeier, K.; Frommeyer, G.: High carbon lightweight iron-manganese-TRIP/TWIP-steels with improved formability and strength. 17. International Federation for Heat Treatment and Surface Engineering (IFHTSE), Kobe, Japan (2008)
Brokmeier, K.: High carbon light-weight Fe-Mn-TRIP/TWIP-steels with improved formability and strength. 7th European Symposium on Martensitic Transformation and Shape Memory Alloys, Bochum, Germany (2006)
Brokmeier, K.: Higher content of carbon improves the formability and strength of light-weight Fe–Mn–Al–Si TRIP-steels. European Congress on Advanced Materials and Processes, Prague, Czech Republic (2005)
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.