Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Ab initio based prediction of phase diagrams: Application to magnetic shape-memory alloys. 9. Materialwissenschaftlicher Tag der Ruhr-Universtät Bochum, Bochum, Germany (2011)
Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Chemical Trends for Phase Transitions in Magnetic Shape Memory Alloys Derived from First Principles. International Conference on Ferromagnetic Shape-Memory Alloys, ICFSMA’11, Dresden, Germany (2011)
Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Chemical Trends for Phase Transitions in Magnetic Shape Memory Alloys Derived from First Principles. TMS2011, San Diego, CA, USA (2011)
Hickel, T.; Al-Zubi, A.; Uijttewaal, M.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. Multiscale Materials Modelling, Freiburg, Germany (2010)
Hickel, T.; Uijttewaal, M.; Al-Zubi, A.; Neugebauer, J.: Ab initio simulation of magnetic shape memory alloys: The interplay of magnetic and vibrational degrees of freedom. Oberseminar: Ultraschnelle Dynamik in Festkörpern und an Grenzflächen, Fakultät für Physik, Universtität Duisburg-Essen, Duisburg, Germany (2010)
Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Ab initio investigation of temperature dependent effects in magnetic shape memory Heusler alloys. SPP1239 Fokustreffen A "Fundamentals", Bonn, Germany (2009)
Dutta, B.; Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Prediction of chemical trends in the phase diagrams of magnetic shape memory alloys from first-principles calculations. International Workshop on Ab initio Description of Iron and Steel (ADIS2012), Ringberg, Germany (2012)
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.