Choi, P.; Cojocaru-Mirédin, O.; Würz, R.; Raabe, D.: Comparative atom probe study of Cu(In,Ga)Se2 thin-film solar cells deposited on soda-lime glass and mild steel substrates. Journal of Applied Physics 110 (12), 124513 (7pp) (2011)
Cojocaru-Mirédin, O.; Choi, P.; Abou-Ras, D.; Schmidt, S. S.; Caballero, R.; Raabe, D.: Characterization of grain boundaries in Cu(In,Ga)Se2 films using atom probe tomography. Journal of Photovoltaics 1, pp. 207 - 212 (2011)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells. Ultramicroscopy 111 (6), pp. 552 - 556 (2011)
Dmitrieva, O.; Ponge, D.; Inden, G.; Millán, J.; Choi, P.; Sietsma, J.; Raabe, D.: Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Materialia 59 (1), pp. 364 - 374 (2011)
Gutierrez-Urrutia, I.; Raabe, D.: Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt.% Mn–0.6 wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Materialia 59 (16), pp. 6449 - 6462 (2011)
Herrera, C.; Ponge, D.; Raabe, D.: Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Materialia 59, pp. 4653 - 4664 (2011)
Kadkhodapour, J.; Schmauder, S.; Raabe, D.; Ziaei-Rad, S.; Weber, U.; Calcagnotto, M.: Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta Materialia 59, pp. 4387 - 4394 (2011)
Khorashadizadeh, A.; Raabe, D.; Winning, M.; Pippan, R.: Recrystallization and Grain Growth in Ultrafine-Grained Materials Produced by High Pressure Torsion. Advanced Engineering Materials 13, pp. 245 - 250 (2011)
Khorashadizadeh, A.; Raabe, D.; Zaefferer, S.; Rohrer, G. S.; Rollett, A. D.; Winning, M.: Five-Parameter Grain Boundary Analysis by 3D EBSD of an Ultra Fine Grained CuZr Alloy Processed by Equal Channel Angular Pressing. Advanced Engineering Materials 13, pp. 237 - 244 (2011)
Krüger, T.; Varnik, F.; Raabe, D.: Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Computers & Mathematics with Applications 61 (12), pp. 3485 - 3505 (2011)
Krüger, T.; Varnik, F.; Raabe, D.: Particle stress in suspensions of soft objects. Philosophical Transactions of the Royal Society A 369, pp. 2414 - 2421 (2011)
Millán, J.; Ponge, D.; Raabe, D.; Choi, P.; Dmitrieva, O.: Characterization of Nano-Sized Precipitates in a Mn-Based Lean Maraging Steel by Atom Probe Tomography. Steel Research Int. 82, pp. 137 - 145 (2011)
Renzetti, R. A.; Sandim, H. R. Z.; Padilha, A. F.; Raabe, D.; Lindau, R.; Moeslang, A.: Annealing Effects on the Microstructure of Ferritic-Martensitic ODS-Eurofer Steel. Fusion Science and Technology 70, pp. 22 - 26 (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.