Raacke, J.; Giza, M.; Grundmeier, G.: Combination of FTIR reflection absorption spectroscopy and work function measurement for in-situ studies of plasma modification of polymer and metal surfaces. Surface and Coatings Technology 200 (1-4), pp. 280 - 283 (2005)
Giza, M.; Raacke, J.; Grundmeier, G.: Surface analysis of plasma induced reactions on organic model substrates. 17th International Symposium on Plasma Chemistry, Toronto, Canada, August 07, 2005 - August 12, 2005. (2005)
Giza, M.; Raacke, J.; Grundmeier, G.: Surface analysis of plasma induced reactions on metallic and organic model substrates. 17th International Symposium on Plasma Chemistry, Toronto, Canada (2005)
Raacke, J.; Giza, M.; Grundmeier, G.: In-situ IR-spectroscopic and Kelvin probe investigations of plasma modified model substrates. Ninth International Conference on Plasma Surface Engineering, Garmisch-Partenkirchen, Germany (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.