Li, X.; Shang, C.; Ma, X.; Gault, B.; Subramanian, S.; Sun, J.; Misra, R. D. K.: Elemental distribution in the martensite–austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel. Scripta Materialia 139, pp. 67 - 70 (2017)
Ma, X.; Langelier, B.; Gault, B.; Subramanian, S.: Effect of Nb Addition to Ti-Bearing Super Martensitic Stainless Steel on Control of Austenite Grain Size and Strengthening. Metallurgical and Materials Transactions A 48 (5), pp. 2460 - 2471 (2017)
Peng, Z.; Choi, P.-P.; Gault, B.; Raabe, D.: Evaluation of analysis conditions for laser-pulsed atom probe tomography: example of cemented tungsten carbide. Microscopy and Microanalysis 23 (2), pp. 431 - 442 (2017)
Koprek, A.; Cojocaru-Mirédin, O.; Würz, R.; Freysoldt, C.; Gault, B.; Raabe, D.: Cd and Impurity Redistribution at the CdS/CIGS Interface After Annealing of CIGS-Based Solar Cells Resolved by Atom Probe Tomography. IEEE Journal of Photovoltaics 7 (1), 7762819, pp. 313 - 321 (2017)
Cairney, J. M.; Gault, B.; Larson, D. J.: Recognizing 60 years of achievements in field emission and atomic scale microscopy: Reflections on the International Field Emission Society. Materials Today 19 (4), pp. 182 - 183 (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…