Heilmaier, M.; Krüger, M.; Pyczak, F.; Schloffer, M.; Stein, F. (Eds.): Intermetallics 2023. Intermetallics 2023, Bad Staffelstein, Germany, October 02, 2023 - October 06, 2023. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2023), 122 pp.
Heilmaier, M.; Krüger, M.; Palm, M.; Pyczak, F.; Stein, F. (Eds.): Intermetallics 2021. Intermetallics 2021, Kloster Banz, Bad Staffelstein, Germany, October 04, 2021 - October 08, 2021. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2021), 208 pp.
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings Intermetallics 2019. Intermetallics 2019, Educational Center Kloster Banz, Bad Staffelstein, Germany, September 30, 2019 - October 04, 2019. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2019)
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings Intermetallics 2017. Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany, October 02, 2017 - October 06, 2017. Congressmanagement & Marketing GmbH, Jena, Germany (2017), 220 pp.
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings: Intermetallics 2015, International Conference. Intermetallics 2015, International Conference, Bad Staffelstein, Germany, September 28, 2015 - October 02, 2015. Congressmanagement & Marketing GmbH, Jena, Germany (2015), 116 pp.
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim at significantly enhancing the strength-ductility combination of quinary high-entropy alloys (HEAs) with five principal elements by simultaneously introducing interstitial C/N and the transformation induced plasticity (TRIP) effect. Thus, a new class of alloys, namely, interstitially alloyed TRIP-assisted quinary (five-component) HEAs is being developed.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…