Strondl, A.; Fischer, R.; Frommeyer, G.; Schneider, A.: Investigations of MX and γ'/γ'' precipitates in the nickel-based superalloy 718 produced by electron beam melting. Materials Science and Engineering A 480, pp. 138 - 147 (2008)
Deges, J.; Rablbauer, R.; Frommeyer, G.; Schneider, A.: Observation of boron enrichments in a heat treated quasibinary hypoeutectic NiAl-HfB2 alloy by means of atom probe field-ion microscopy (APFIM). Surface and Interface Analysis 39, pp. 251 - 156 (2007)
Bello-Rodriguez, B.; Schneider, A.; Hassel, A. W.: Preparation of Ultramicroelectrode Array of Gold Hemispheres on Nanostructured NiAl-Re. J. Electrochem. Soc. 153 (1), pp. C33 - C36 (2006)
Milenkovic, S.; Hassel, A. W.; Schneider, A.: Effect of the Growth Conditions on the Spatial Features of Re Nanowires Produced by Directional Solidification. Nano Letters 6 (4), pp. 794 - 799 (2006)
Stallybrass, C.; Schneider, A.; Sauthoff, G.: The strengthening effect of (Ni, Fe)Al precipitates on the mechanical properties at high temperatures of ferritic Fe–Al–Ni–Cr alloys. Intermetallics 13 (12), pp. 1263 - 1268 (2005)
Hassel, A. W.; Bello-Rodriguez, B.; Milenkovic, S.; Schneider, A.: Electrochemical Production of Nanopore Arrays into a Nickel Aluminium Alloy. Electrochimica Acta 50, pp. 3033 - 3039 (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…