Enning, D.; Venzlaff, H.; Garrelfs, J.; Dinh, H. T.; Meyer, V.; Mayrhofer, K. J. J.; Hassel, A. W.; Stratmann, M.; Widdel, F.: Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environmental Microbiology 14 (7), pp. 1772 - 1787 (2012)
Beese, P.; Venzlaff, H.; Enning, D.; Mayrhofer, K. J. J.; Widdel, F.; Stratmann, M.: Monitoring anerobic microbially influenced corrosion with electrochemical frequency modulation. 12th Topical Meeting of the International Society of Electrochemistry & XXII International Symposium on Bioelectrochemistry and Bioenergetics of the Bioelectrochemical Society, Bochum, Germany (2013)
Venzlaff, H.; Enning, D.; Widdel, F.; Stratmann, M.; Hassel, A. W.: A new model for microbiologically influenced corrosion. The European Corrosion Congress Eurocorr 2010, Moscow, Russia (2010)
Venzlaff, H.; Widdel, F.; Stratmann, M.; Hassel, A. W.: Microbial corrosion induced by a new highly aggressive SRB strain. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Venzlaff, H.; Enning, D. R.; Widdel, F.; Stratmann, M.; Hassel, A. W.: Microbial corrosion induced by a highly aggressive SRB strain. 2nd International IMPRS-SurMat Workshop on Surface and Interface Engineering in Advanced Materials, Bochum, Germany (2008)
Venzlaff, H.: Die elektrisch mikrobiell beeinflusste Korrosion von Eisen durch sulfatreduzierte Bakterien. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität, Bochum, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…