Gutiérrez-Urrutia, I.; Raabe, D.: High performance lightweight steels. 8th Pacific Rim International Congress on Advanced Materials and Processing (PRICM-8), Waikoloa, Hawai, USA (2013)
Gutiérrez-Urrutia, I.; Seol, J.-B.; Marceau, R. K. W.; Choi, P.; Raabe, D.: Multi-scale characterization of advanced structural steels: from the micro to the atomic-scale. 8th Pacific Rim International Congress on Advanced Materials and Processing (PRICM-8), Waikoloa, Hawai, USA (2013)
Herbig, M.; Choi, P.; Raabe, D.: Combining Structural and Chemical Information on the nm Scale by Correlative TEM and APT Characterization. Microscopy and Microanalysis 2013, Indianapolis, IN, USA (2013)
Li, Y. J.; Choi, P.; Herbig, M.; Kostka, A.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R.: Atomic Scale Understanding of 6.8 GPa Ultra-high Strength Pearlite. 8th Pacific Rim International Congress on Advanced Materials and Processing (PRICM-8), Waikoloa, HI, USA (2013)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: Stress-strain partitioning in martensitic-ferritic steels analyzed by integrated full-field crystal plasticity simulations and high resolution in situ experiments. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Yan, D.; Tasan, C. C.; Raabe, D.: Coupled high resolution strain and microstructure mapping based on digital image correlation and electron backscatter diffraction. IMPRS-SurMat Seminar, Meschede, Germany (2013)
Raabe, D.; Choi, P.; Herbig, M.; Li, Y.; Zaefferer, S.; Kirchheim, R.: Iron – Mythology and High Tech: From Electronic Understanding to Bulk Nanostructuring of 1 Billion Tons. Summer School 2013 on Functional Solids – FERRUM - organized by Leibniz University Hannover, Goslar, Germany (2013)
Roters, F.; Eisenlohr, P.; Diehl, M.; Shanthraj, P.; Kords, C.; Raabe, D.: The general crystal plasticity framework 'DAMASK'. Institutsseminar, Institute of Materials Simulation, Department of Materials Science, University of Erlangen-Nürnberg, Fürth, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.