Zheludkevich, M. L.; Serra, R.; Grundmeier, G.; Yang, L. H.; Ferreira, M. G. S.: Barrier properties of polyurethane coil coatings treated by microwave plasma polymerization. Surface and Coatings Technology 200 (12-13), pp. 4040 - 4049 (2006)
Wapner, K.; Grundmeier, G.: Spectroscopic analysis of the interface chemistry of ultra-thin plasma polymer films on iron. Surface and Coatings Technology 200 (1-4), pp. 100 - 103 (2005)
Raacke, J.; Giza, M.; Grundmeier, G.: Combination of FTIR reflection absorption spectroscopy and work function measurement for in-situ studies of plasma modification of polymer and metal surfaces. Surface and Coatings Technology 200 (1-4), pp. 280 - 283 (2005)
Carpentier, J.; Grundmeier, G.: Chemical structure and morphology of thin bilayer and composite organosilicon and fluorocarbon microwave plasma polymer films. Surface and Coatings Technology 192 (2-3), pp. 189 - 198 (2005)
Grundmeier, G.; Stratmann, M.: Adhesion and De-adhesion mechanisms at polymer/metal interfaces: Mechanistic understanding based on in situ studies of buried interfaces. Annual Review of Materials Research 35, pp. 571 - 615 (2005)
Wapner, K.; Grundmeier, G.: Application of the Scanning Kelvin Probe for the Study of the Corrosion Resistance of Interfacial Thin Silicon Organic Films at Adhesive/Metal Interfaces. Silicon Chemistry 2 (5-6), pp. 235 - 245 (2005)
Wapner, K.; Schoenberger, B.; Stratmann, M.; Grundmeier, G.: Height-regulating scanning Kelvin probe for simultaneous measurement of surface topology and electrode potentials at buried polymer/metal interfaces. Journal of the Electrochemical Society 152 (3), pp. E114 - E122 (2005)
Wapner, K.; Schönberger, B.; Stratmann, M.; Grundmeier, G.: Applications of a new height regulated Scanning Kelvin Probe in Adhesion and Corrosion Science. Journal of the Electrochemical Society 152 (3), pp. E114 - E122 (2005)
Wapner, K.; Grundmeier, G.: Spatially resolved measurements of the diffusion of water in a model adhesive/silicon lap joint using FTIR-transmission-microscopy. International Journal of Adhesion and Adhesives 24 (3), pp. 193 - 200 (2004)
Barranco, V.; Carpentier, J.; Grundmeier, G.: Correlation of morphology and barrier properties of thin microwave plasma polymer films on metal substrate. Electrochimica Acta 49 (12), pp. 1999 - 2013 (2004)
Barranco, V.; Thiemann, P.; Yasuda, H. K.; Stratmann, M.; Grundmeier, G.: Spectroscopic and electrochemical characterisation of thin cathodic plasma polymer films on iron. Applied Surface Science 229 (1-4), pp. 87 - 96 (2004)
Grundmeier, G.; Thiemann, P.; Carpentier, J.; Shirtcliffe, N.; Stratmann, M.: Tailoring of the morphology and chemical composition of thin organosilane microwave plasma polymer layers on metal substrates. Thin Solid Films 446 (1), pp. 61 - 71 (2004)
Shirtcliffe, N. J.; Stratmann, M.; Grundmeier, G.: In situ infrared spectroscopic studies of ultrathin inorganic film growth on zinc in non-polymerizing cold plasmas. Surf Interface Anal 35, 10, pp. 799 - 804 (2003)
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.