Michalcová, A.; Palm, M.; Senčeková, L.; Rolink, G.; Weisheit, A.; Kubatik, T. F.: Microstructures of iron aluminides processed by additive layer manufacturing and spark plasma sintering. Aluminium a nezelezne kovy 2015 / Aluminium and non-ferrous Metals 2015, Bystrice nad Pernstejnem, Czech Republic (2015)
Stein, F.; Luo, W.; Li, X.; Palm, M.: Diffusion couples as a "new" method for material synthesis. 61. Metallkunde-Kolloquium - Werkstoffforschung für Wirtschaft und Gesellschaft, Lech am Arlberg, Austria (2015)
Michalcová, A.; Azmi, S. A.; Palm, M.; Senčeková, L.: Influence of B on Structure and Mechanical Properties of Fe–Al–Nb Intermetallic Alloys. Intermetallics 2015 , Kloster Banz, Germany (2015)
Stein, F.; Li, X.; Palm, M.; Scherf, A.; Janda, D.; Heilmaier, M.: Fe–Al Alloys with Fine-Scaled, Lamellar Microstructure: A New Candidate for Replacing Steels in High-Temperature Structural Applications? 60th Anniversary Metal Research Colloquium organized by the Department for Metal Research and Materials Testing of the University Leoben, Lech am Arlberg, Austria (2014)
Palm, M.: Alloy development and industrial processing of iron aluminide based alloys. Czech-Japanese Workshop on High-Temperature Intermetallics, Brno, Czech Republic (2014)
Rolink, G.; Senčeková, L.; Palm, M.; Weisheit, A.: Additive Manufacturing of a Binary Iron Aluminide by Laser Metal Deposition and Selective Laser Melting. Intermetallics 2013, Educational Center Kloster Banz, Bad Staffelstein, Germany (2013)
Stein, F.; Voß, S.; Palm, M.: Mechanical properties of transition-metal laves phases. Plasticity 2012, Symp. on Plasticity and Its Current Applications, San Juan, Puerto Rico (2012)
Barnoush, A.; Zamanzade, M.; Palm, M.: Evaluation of sensivity to hydrogen embrittlement in Fe3Al–xCr alloys with different chromium concentration. FeAl2011, Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Lanzarote, Canary Islands, Spain (2011)
Izanlou, A.; Todorova, M.; Friák, M.; Palm, M.; Neugebauer, J.: Theoretical study of the environmental effect of H-containing gases on Fe–Al surfaces. FeAl2011, Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Lanzarote, Canary Islands, Spain (2011)
Palm, M.; Krieg, R.: Neutral salt spray tests on Fe−Al and Fe−Al−X. FeAl2011, Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Lanzarote, Canary Islands, Spain (2011)
Palm, M.; Engberding, N.; Stein, F.; Irsen, S. H.; Kelm, K.: Phases, Phase Transformations and Evolution of Microstructures in Al-rich TiAl. ISPMA 12, 12th International Symposium on Physics of Materials, Prague, Czech Republic (2011)
He, C.; Stein, F.; Palm, M.; Voß, S.: Thermodynamic Assessment of the Fe–Nb and Fe–Al–Nb System. 3rd Sino-German Symposium on Computational Thermodynamics and Kinetics and Their Applications to Solidification and Solid-State Phase Transformation, Xi’an, China (2011)
Stein, F.; Palm, M.; Voß, S.; He, C.; Dovbenko, O. I.; Prymak, O.: Experimental Investigations of Phases, Phase Equilibria, and Melting Behaviour in the Systems Fe–Al–Nb and Co–Al–Nb and Their Terminal Binary Systems. Calphad XL, Rio de Janeiro, Brazil (2011)
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.