Goerdeler, M.: Application of a dislocation density based flow stress model in the integrative through-process modeling of Aluminium production. Dissertation, RWTH Aachen, Aachen, Germany (2007)
Wolff, C.: Der tribologisch asymmetrische Flachstauchversuch - Eine neue Methode zur Analyse von Reibungsvorgängen bei Umformprozessen. Dissertation, RWTH Aachen, Aachen, Germany (2001)
Kaushal, C.: Untersuchung der Abhängigkeit des Ölaustrags von der Oberflächenfeinstruktur beim Auswalzen gedoppelter Aluminiumfolien. Diploma, HS Niederrhein, Krefeld, Germany (2003)
Tranchant, J.: Deformation of Semi-Brittle Intermetallic Material under Superimposed Hydrostatic Pressure. Diploma, Ecole Centrale de Nantes, Nantes, France (2002)
Paiva do Nascimento, A. W.: An optimized method to determine initial parameters of advanced yield surfaces for sheet metal form-ing applications. Master, Ruhr-Universität Bochum (2021)
Kusampudi, N.: Using Machine Learning and Data-driven Approaches to Predict Damage Initiation in Dual-Phase Steels. Master, Ruhr-Universität Bochum (2020)
Soundararajan, C. K.: Recrystallization behavior and mechanical properties of interstitially alloyed CoCrFeMnNi equiatomic high entropy alloy. Master, RWTH Aachen University (2020)
Ackers, M.: Recommissioning of a metal powder atomisation system and investigation of its suitability to produce powders for additive Manufacturing processes. Master, Ruhr-Universität Bochum, Bochum, Germany (2017)
Qin, Y.: Effect of post-heat treatment on the microstructure and mechanical properties of SLM-produced IN738LC. Master, RWTH Aachen, Aachen, Germany (2017)
Wu, L.: Characterization of the microstructure and impurities of Al–Mg–Sc alloy produced by Laser Additive Manufacturing. Master, RWTH Aachen, Aachen, Germany (2016)
Lu, L.: Characterization of the crack formation mechanism in Ni-based superalloy Inconel 738LC produced by Selective Laser Melting (SLM). Master, Institut für Eisenhüttenkunde, RWTH Aachen, Aachen, Germany (2015)
Sheng, Z.: Characterization of the Microstructure and Mechanical Properties of Maraging Steels Produced by Laser Additive Manufacturing. Master, RWTH Aachen University, Aachen, Germany (2014)
Archie, F. M. F.: Nanostructured High-Mn Steels by High Pressure Torsion: Microstructure-Mechanical Property Relations. Master, Materials Chemistry, Lehrstuhl für Werkstoffchemie, RWTH Aachen, Aachen, Germany (2014)
Multiple Exciton Generation (MEG) is a promising pathway towards surpassing the Shockley-Queisser limit in solar energy conversion efficiency, where an incoming photon creates a high energy exciton, which then decays into multiple excitons.
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Wear-related energy loss and component damage, including friction and remanufacturing of components that failed by surface contacts, has an incredible cost. While high-strength materials generally have low wear rates, homogeneous deformation behaviour and the accommodation of plastic strain without cracking or localised brittle fracture are also…
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
The exploration of high dimensional composition alloy spaces, where five or more alloying elements are added at near equal concentration, triggered the development of so-called high entropy (HEAs) or compositionally complex alloys (CCAs). This new design approach opened vast phase and composition spaces for the design of new materials with advanced…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Interstitial alloying in high-entropy alloys (HEAs) is an important strategy for tuning and improving their mechanical properties. Strength can be increased due to interstitial solid-solution hardening, while interstitial alloying can simultaneously affect, e.g., stacking fault energies (SFEs) and thus trigger different deformation mechanisms…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…