Özkanat, Ö.; Salgin, B.; Rohwerder, M.; Mol, J. M. C.; De Wit, H. J. H. W.; Terryn, H. A.: Erratum: Scanning Kelvin probe study of (oxyhydr)oxide surface of aluminum alloy (The Journal of Physical Chemistry C (2012) 116:2 (1805-1811) DOI: 10.1021/jp205585u). Journal of Physical Chemistry C 116 (10), p. 6505 - 6505 (2012)
Özkanat, Ö.; Salgin, B.; Rohwerder, M.; Mol, J. M. C.; Terryn, H. A.; De Wit, H. J. H. W.: A Combined Macroscopic Adhesion and Interfacial Bonding Study of Epoxy Coatings on Pretreated AA2024-T3. European Corrosion Congress (EUROCORR) 2010, Moscow, Russia, September 13, 2010 - September 17, 2010. Eurocorr2010, the European Corrosion Congress 3, pp. 2760 - 2768 (2010)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.