Friák, M.; Sob, M.; Kim, O.; Ismer, L.; Neugebauer, J.: First principles study of the alpha-iron stability limits. 448. Wilhelm und Else Heraeus-Seminar "Excitement in magnetism: Spin-dependent scattering and coupling of excitations in ferromagnets", Tegernsee, Ringberg, Germany (2009)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Magnetic contributions to the Thermodynamics of iron and Cementite. 448. WE-Heraeus-Seminar "Excitement in magnetism", Ringberg Castle, Tegernsee, Germany (2009)
Abu-Farsakh, H.; Neugebauer, J.: Combined ab-initio and Monte Carlo calculations to explore the surface thermodynamics and kinetics of dilute nitrides. 8th International Conference on Nitride Semiconductors (ICNS-8), Jeju Island, South Korea (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Role of the parasitic Mg3N2 phase in post-groth activation of p-doped Mg:GaN. ICNS-8, Jeju Island, South Korea (2009)
Tillak, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio study of nano-precipitate nucleation and growth in ferritic steels. Ab Initio Description of Iron and Steel, Tegernsee, Germany (2009)
Dick, A.; Yang, R.; Smith, A. R.; Neugebauer, J.: Surface magnetism at the atomic scale: An ab initio analysis of spin-polarized scanning tunneling microscopy. International workshop "Ab initio Description of Iron and Steel (ADIS2006), Ringberg Castle, Germany (2009)
Friak, M.; Sander, B.; Ma, D.; Raabe, D.; Neugebauer, J.: Theory-guided design of Ti–Nb alloys for biomedical applications. 1st International Conference on Material Modelling, Dortmund, Germany (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Role of the parasitic Mg3N2 phase in post-growth activation of p-doped Mg:GaN. CECAM Workshop 09: Which Electronic Structure Method for the Study of Defects?, CECAM-HQ-EPFL, Lausanne, Switzerland (2009)
Abu-Farsakh, H.; Neugebauer, J.: The role of surface kinetics in achieving high non-equilibrium N concentrations in bulk GaAs. DPG Spring Meeting 2009, Dresden, Germany (2009)
Grabowski, B.; Hickel, T.; Neugebauer, J.: Ab initio up to the melting point: Anharmonicity and vacancies in aluminum. International Workshop on Multiscale Materials Modelling (IWoM3), Berlin, Germany (2009)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Lencer, D.; Neugebauer, J.: First principles determination of structural phase transitions in smart materials. International Workshop on Multiscale Materials Modelling (IWoM3), Berlin, Germany (2009)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: The free energy of iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. International Workshop on Multiscale Materials Modelling (IWoM3), Berlin, Germany (2009)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Atomistic modeling of the strain-induced interactions between C atoms in Fe–C solid solutions. International Workshop on Multiscale Materials Modelling (IWoM3), Berlin, Germany (2009)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: A multiscale study of the Hydrogen enhanced local plasticity (HELP) mechanism. IWoM3 2009 - International Workshop on Multiscale Materials Modeling, Berlin, Germany (2009)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…