Dumont, M.; Borbély, A.; Sander, P. M.; Kostka, A.; Kaysser-Pyzalla, A. R.: Crystallographic investigations of a growth series of Apatosaurus long bones: Implications for biomechanics. 71st SVP meeting, Las Vegas, NV, USA (2011)
Dumont, M.; Borbély, A.; Sander, P. M.; Kostka, A.; Kaysser-Pyzalla, A. R.: Texture and nanostructure of Sauropod bones: Implications for biomechanics. 1st International symposium on paleohistology, Barcelona, Spain (2011)
Dumont, M.; Kostka, A.; Sander, M.; Borbély, A.; Pyzalla, A. R.: Comparison of apatite crystallite sizes in sauropod and mammal fossil bones. 6th Bone diagenesis meeting, Poppelsdorfer Schloss, University of Bonn, Germany (2009)
Barbatti, C.; Pinto, H.; Pyzalla, A. R.: Defect and Stress Analyses in Novel Fe-Mn-C Steels by X-Ray Diffraction. MSE08 Materials Science and Engineering, Nürnberg, Germany (2008)
Brito, P.; Pinto, H.; Genzel, C.; Pyzalla, A. R.: Phase Composition and Internal Stress Development during the Oxidation of Iron Aluminides. MSE08 Materials Science and Engineering, Nürnberg, Germany (2008)
Garcia, J.; Pyzalla, A. R.: Experimental Investigations on the Influence of (Ta,Nb)C and Processing Parameters on the Formation of Wear Resistant Graded Surfaces in Cemented Carbides. MSE08 Materials Science and Engineering, Nürnberg, Germany (2008)
Moscicki, M.; Pinto, H.; Paulmann, C.; Borbély, A.; Pyzalla, A. R.: In-Situ Investigation of Grain Rotations During Tensile Straining of Steel Wires. MSE08 Materials Science and Engineering, Nürnberg, Germany (2008)
Pyzalla, A. R.; Dumont, M.; Zoeger, N.; Streli, C.; Wobrauscheck, P.; Sander, M.: Synchrotron XRF analyses of element distribution in fossilized sauropod dinosaur bones. Denver X-ray Conference, Denver (2008)
Guio, A.; Pinto, H.; Pyzalla, A. R.; Jahn, A.; Standfuß, J.: Characterization of induction assisted welds in high strength steel grades. 2nd International Conference on Steels in Cars and Trucks 2008, Wiesbaden, Germany (2008)
Guio, A.; Pinto, H.; Garcia, J.; Jahn, A.; Standfuß, J.; Pyzalla, A. R.: Characterization of Induction-Assisted Welds in High Strength Steel Grades. Steel Conference 2008 - New Developments on Metallurgy and Applications of High Strength Steels, Buenos Aires, Argentina (2008)
Coelho, R. S.; Kostka, A.; Sheikhi, S.; Kocak, M.; Dos Santos, J.; Pyzalla, A. R.: Charakterisierung der Mikrostruktur und Verformung in Mg-Mg-Laserschweißnähten und Al-Stahl-Reibrührschweißverbindungen. 54. Metallkunde-Kolloquium Werkstoffforschung, Lech / Österreich (2008)
Garcia, J.; Lammer, A.; Garcia, L. F.; Weber, S.; Kostka, A.; Pyzalla, A. R.: Investigations of Wear Mechanisms in Diamond Tools with Fe-Based Matrices Reinforced with WC-Co Particles. Intern. Symposium on Friction, Wear and Wear Protection, Aachen, Germany (2008)
Pyzalla, A.: Sauropoden-Dinosaurier: Giganten aus nanokristallinem Material. 29. Adelbodener Werkstoffseminar des IWK 1 der Universität Karlsruhe, Adelboden, Schweiz (2008)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…