Zhuang, X.; Antonov, S.; Li, L.; Feng, Q.: Effect of alloying elements on the coarsening rate of γʹ precipitates in multi-component CoNi-based superalloys with high Cr content. Scripta Materialia 202, 114004 (2021)
Li, D.; Zhang, X.; Zhao, W.; Merrill, H. D. M.; Meyer, N. T. M.; Antonov, S.; Liao, Y.; Zheng, Y.: The Role of High-Index Twinning on Hierarchical α Microstructure in a Metastable β Ti–5Al–5Mo–5V–3Cr Alloy. JOM-Journal of the Minerals Metals & Materials Society 73 (8), pp. 2303 - 2311 (2021)
Lilensten, L.; Kostka, A.; Lartique-Korinek, S.; Gault, B.; Tin, S.; Antonov, S.; Kontis, P.: Partitioning of Solutes at Crystal Defects in Borides After Creep and Annealing in a Polycrystalline Superalloy. JOM-Journal of the Minerals Metals & Materials Society 73, pp. 2293 - 2302 (2021)
Antonov, S.; Shi, R.; Li, D.; Kloenne, Z.; Zheng, Y.; Fraser, H. L.; Raabe, D.; Gault, B.: Nucleation and growth of α phase in a metastable β-Titanium Ti–5Al–5Mo–5V–3Cr alloy: Influence from the nano-scale, ordered-orthorhombic O″ phase and α compositional evolution. Scripta Materialia 194, 113672 (2021)
Antonov, S.; Li, B.; Gault, B.; Tan, Q.: The effect of solute segregation to deformation twin boundaries on the electrical resistivity of a single-phase superalloy. Scripta Materialia 186, pp. 208 - 212 (2020)
Antonov, S.; Tan, Q.; Li, B.: Atom Probe Tomographic Investigation of the Solute Segregation to Crystal Defects in γ-phase Co–35Ni–20Cr–10Mo Superalloy. Microscopy and Microanalysis 26 (S2), pp. 3076 - 3077 (2020)
Zheng, Y.; Antonov, S.; Fraser, H. L.: Exploration of Novel Ordering Mechanism in Titanium Alloys Using Atom Probe Tomography and Aberration-corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis 26 (S2), pp. 2078 - 2079 (2020)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…