Cordill, M. J.; Marx, V. M.; Kirchlechner, C.: Ductile film delamination from compliant substrates using hard overlayers. Thin Solid Films 571 (P2), pp. 302 - 307 (2014)
Glushko, O.; Marx, V. M.; Kirchlechner, C.; Zizak, I.; Cordill, M. J.: Recovery of electrical resistance in copper films on polyethylene terephthalate subjected to a tensile strain. Thin Solid Films 552 (3), pp. 141 - 145 (2014)
Schüler, K.; Philippi, B.; Weinmann, M.; Marx, V. M.; Vehoff, H.: Effects of processing on texture, internal stresses and mechanical properties during the pulsed electrodeposition of nanocrystalline and ultrafine-grained nickel. Acta Materialia 61 (11), pp. 3945 - 3955 (2013)
Cordill, M. J.; Marx, V. M.: Fragmentation testing for ductile thin films on polymer substrates. Philosophical Magazine Letters 93 (11), pp. 618 - 624 (2013)
Cordill, M. J.; Marx, V. M.: In-situ Tensile Straining of Metal Films on Polymer Substrates under an AFM. 2012 MRS Fall Meeting & Exhibit, Hynes Convention Center, Boston, MA, USA, November 25, 2012 - November 30, 2012. Materials Research Society Symposium Proceedings 1527, (2013)
Marx, V. M.; Palm, M.: The wet and hot corrosion behavior of iron aluminides. THERMEC 2016 – Int. Conf. on Processing & Manufacturing of Advanced Materials
, Graz, Austria (2016)
Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: The mechanical behavior of thin cobalt films on polyimide. Arbeitskreistreffen Rasterkraftmikroskopie und nanomechanische Methoden, TU Darmstadt, Darmstadt, Germny (2015)
Marx, V. M.; Cordill, M. J.; Kirchlechner, C.; Dehm, G.: In-situ stress measurements in thin films using synchrotron diffraction. Summer School: Theory and Practice of Modern Powder Diffraction, Tagungshaus Schönenberg, Ellwangen, Ellwangen, Germany (2014)
Marx, V. M.; Kirchlechner, C.; Berger, J.; Cordill, M. J.; Dehm, G.: In-situ stress measurements in Cu films using synchrotron radiation. "Mechanical Issues for Flexible Electronics" Flex Workshop, Erich Schmid Institut, Leoben, Leoben, Austria (2014)
Toth, F.; Wiesinger, A.; Cordill, M. J.; Marx, V. M.; Rammerstorfer, F. G.: Computational simulation of cracking and buckling of thin metallic films on polymer substrate under tensile loading. "Mechanical Issues for Flexible Electronics" Flex Workshop, Erich Schmid Institut, Leoben, Leoben, Austria (2014)
Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: Effects of the film thickness on the deformation behavior of thin Cu films on polyimide. Arbeitskreistreffen Rasterkraftmikroskopie und nanomechanische Methoden, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany (2014)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…