Luo, W.; Kirchlechner, C.; Fang, X.; Brinckmann, S.; Dehm, G.; Stein, F.: Influence of composition and crystal structure on the fracture toughness of NbCo2 Laves phase studied by micro-cantilever bending tests. Materials and Design 145, pp. 116 - 121 (2018)
Brinckmann, S.; Matoy, K.; Kirchlechner, C.; Dehm, G.: On the influence of microcantilever pre-crack geometries on the apparent fracture toughness of brittle materials. Acta Materialia 136, pp. 281 - 287 (2017)
Brinckmann, S.; Kirchlechner, C.; Dehm, G.: Stress intensity factor dependence on anisotropy and geometry during micro-fracture experiments. Scripta Materialia 127, pp. 76 - 78 (2017)
Boyce, B. L.; Kramer, S. L. B.; Fang, H. E.; Cordova, T. E.; Neilsen, M. K.; Dion, K. N.; Kaczmarowski, A. K.; Karasz, E.; Xue, L.; Gross, A. J.et al.; Ghahremaninezhad, A.; Ravi-Chandar, K.; Lin, S.-P.; Chi, S.-W.; Chen, J.-S.; Yreux, E.; Rüter, M.; Qian, D.; Zhou, Z.; Bhamare, S.; O'Connor, D. T.; Tang, S.; Elkhodary, K. I.; Zhao, J.; Hochhalter, J. D.; Cerrone, A. R.; Ingraffea, A. R.; Wawrzynek, P. A.; Carter, B. J.; Emery, J. M.; Veilleux, M. G.; Yang, P.; Gan, Y.; Zhang, X.; Chen, Z.; Madenci, E.; Kilic, B.; Zhang, T.; Fang, E.; Liu, P.; Lua, J. Y.; Nahshon, K.; Miraglia, M.; Cruce, J.; Defrese, R.; Moyer, E. T.; Brinckmann, S.; Quinkert, L.; Pack, K.; Luo, M.; Wierzbicki, T.: The sandia fracture challenge: Blind round robin predictions of ductile tearing. International Journal of Fracture 186 (1-2), pp. 5 - 68 (2014)
Brinckmann, S.; Quinkert, L.: Ductile tearing: Applicability of a modular approach using cohesive zones and damage mechanics. International Journal of Fracture 186 (1-2), pp. 141 - 154 (2014)
Tsybenko, H.; Dehm, G.; Brinckmann, S.: Deformation and chemical evolution in cementite (Fe3C) during small-scale tribology. European Congress and Exhibition on Advanced Materials and Processes - EUROMAT 2021, Virtual (2021)
Tsybenko, H.; Dehm, G.; Brinckmann, S.: Deformation and chemical evolution during tribology in cementite. Materials Science and Engineering Congress (MSE) 2020, online, Darmstadt, Germany (2020)
Brinckmann, S.; Dehm, G.: Severe deformation of a lamellar microstructure: pearlitic steel as a case study. TMS 2019 Annual Meeting & Exhibition, San Antonio, TX, USA (2019)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…