Zhang, Z.; Dehm, G.: Study on the Atomic and Electronic Structure in CrN (VN, TiN) Films using Cs-Corrected TEM. Microscopy and Microanalysis 21 (3), pp. 2079 - 2080 (2015)
Rashkova, B.; Faller, M.; Pippan, R.; Dehm, G.: Growth mechanism of Al2Cu precipitates during in situ TEM heating of a HPT deformed Al–3wt.%Cu alloy. Journal of Alloys and Compounds 600, pp. 43 - 50 (2014)
Imrich, P. J.; Kirchlechner, C.; Motz, C.; Dehm, G.: Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary. Acta Materialia 73, pp. 240 - 250 (2014)
Harzer, T. P.; Daniel, R.; Mitterer, C.; Dehm, G.; Zhang, Z. L.: Transmission electron microscopy characterization of CrN films on MgO(001). Thin Solid Films 545, pp. 154 - 160 (2013)
Daum, B.; Dehm, G.; Clemens, H.; Rester, M.; Fischer, F. D.; Rammerstorfer, F. G.: Elastoplastic buckling as source of misinterpretation of micropillar tests. Acta Materialia 61 (13), pp. 4996 - 5007 (2013)
Taylor, A. A.; Cordill, M. J.; Bowles, L.; Schalko, J.; Dehm, G.: An elevated temperature study of a Ti adhesion layer on polyimide. Thin Solid Films 531, pp. 354 - 361 (2013)
Li, L. L.; An, X. H.; Imrich, P. J.; Zhang, P.; Zhang, Z. J.; Dehm, G.; Zhang, Z. F.: Microcompression and cyclic deformation behaviors of coaxial copper bicrystals with a single twin boundary. Scripta Materialia 69, pp. 199 - 202 (2013)
Zhang, Z.; Li, H.; Daniel, R.; Mitterer, C.; Dehm, G.: Insights into the atomic and electronic structure triggered by ordered nitrogen vacancies in CrN. Physical Review B 87 (1), pp. 014104-1 - 014104-9 (2013)
Li, J.; Zarif, M. Z.; Dehm, G.; Schumacher, P.: Influence of impurity elements on the nucleation and growth of Si in high purity melt-spun Al–Si-based alloys. Philosophical Magazine 92 (31), pp. 3789 - 3805 (2012)
Cordill, M. J.; Taylor, A. A.; Berger, J.; Schmidegg, K.; Dehm, G.: Robust mechanical performance of chromium-coated polyethylene terephthalate over a broad range of conditions. Philosophical Magazine 92 (25-27), pp. 3346 - 3362 (2012)
Taylor, A. A.; Cordill, M. J.; Dehm, G.: On the limits of the interfacial yield model for fragmentation testing of brittle films on polymer substrates. Philosophical Magazine 92 (25-27), pp. 3363 - 3380 (2012)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The structures of grain boundaries (GBs) have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the near-atomic scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
The computational materials design department in collaboration with the Technical University Darmstadt and the Ruhr University Bochum developed a workflow to calculate phase diagrams from ab-initio. This achievement is based on the expertise in the ab-initio thermodynamics in combination with the recent advancements in machine-learned interatomic…
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.